Rigidity of Infinitesimal Momentum Maps
نویسنده
چکیده
In this paper we prove rigidity theorems for Poisson Lie group actions on Poisson manifolds. In particular, we prove that close infinitesimal momentum maps associated to Poisson Lie group actions are equivalent using a normal form theorem for SCI spaces. When the Poisson structure of the acted manifold is integrable, this yields rigidity also for lifted actions to the symplectic groupoid.
منابع مشابه
Projective background of the infinitesimal rigidity of frameworks
We present proofs of two classical theorems. The first one, due to Darboux and Sauer, states that infinitesimal rigidity is a projective invariant; the other one establishes relations (infinitesimal Pogorelov maps) between the infinitesimal motions of a Euclidean framework and of its hyperbolic and spherical images. The arguments use the static formulation of infinitesimal rigidity. The duality...
متن کاملVariations of Hodge
Varieties generally come to life through the maps between them and the modules (e.g. functions) that live on them. Moduli spaces are no exception to this rule. An important class of maps on moduli spaces (for compact Kähler manifolds) is that of period maps, which are substantially the same thing as the modules known as variations of Hodge structure. The purpose of this paper is twofold. First,...
متن کاملMomentum Maps, Dual Pairs and Reduction in Deformation Quantization∗
This paper is a brief survey of momentum maps, dual pairs and reduction in deformation quantization. We recall the classical theory of momentum maps in Poisson geometry and present its quantum counterpart. We also discuss quantization of momentum maps and applications of quantum momentum maps to quantum versions of Marsden-Weinstein reduction. This paper is organized as follows. We recall the c...
متن کاملFinite and Infinitesimal Rigidity with Polyhedral Norms
We characterise finite and infinitesimal rigidity for bar-joint frameworks in R with respect to polyhedral norms (i.e. norms with closed unit ball P a convex d-dimensional polytope). Infinitesimal and continuous rigidity are shown to be equivalent for finite frameworks in R which are well-positioned with respect to P. An edge-labelling determined by the facets of the unit ball and placement of ...
متن کاملInfinitesimal Rigidity of Symmetric Bar-Joint Frameworks
We propose new symmetry-adapted rigidity matrices to analyze the infinitesimal rigidity of arbitrary-dimensional bar-joint frameworks with Abelian point group symmetries. These matrices define new symmetry-adapted rigidity matroids on grouplabeled quotient graphs. Using these new tools, we establish combinatorial characterizations of infinitesimally rigid two-dimensional bar-joint frameworks wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015